
INTRODUCTION TO ZEND FRAMEWORK

Dragos-Paul POP

Faculty of Computer Science for Business Management,

 Romanian – American University, Bucharest, Romania

ABSTRACT

 A software framework provides the

skeleton of an application that can be

customized by an application developer.

Like software libraries, software

frameworks aid the software developer by

containing source code that solves problems

for a given domain and provides a simple

API. However, while a code library acts like

a servant to other programs, software

frameworks reverse the master/servant

relationship. This reversal, called inversion

of control, expresses the essence of software

frameworks.

 A web application framework is a

software framework that is designed to

support the development of dynamic

websites, Web applications and Web

services. The framework aims to alleviate

the overhead associated with common

activities used in Web development. For

example, many frameworks provide libraries

for database access, templating frameworks

and session management, and often promote

code reuse.

1. INTRODUCING ZEND

FRAMEWORK

 Zend Framework was designed and built

to improve developer productivity. Unlike

other frameworks that require large

configuration files to work, most aspects of

a Zend Framework application can be

defined at runtime using simple PHP

commands. This saves developers time

because instead of complex configuration

files controlling every aspect of the

application, you only configure the parts that

deviate from the norm.

 The framework was written entirely in

PHP 5. It will not run on any server that

does not have a minimum of PHP 5.1.4

installed. The current version has been

thoroughly tested and over 80% of the code

is covered by test cases using PHPUnit.

 Zend Framework was built on several

key concepts:

• Best Practices

• Community Driven

• Extensionability

• Extreme Simplicity

• Liberal BSD License

 Unlike many other frameworks available

for PHP, Zend Framework chose not to

implement the ActiveRecord pattern and not

to ship with an Object-Relation Mapper

(ORM). Contrary to popular opinion, this

was not an oversight but a conscious

decision by the framework team.

 The Zend Framework is really a hybrid

framework and as such can be used in

amuch larger range of projects than strict

“application frameworks”. While many

components in Zend Framework can be used

stand-alone like a component library, it is, at

its core an implementation of the “Model-

View-Controller” (MVC) pattern.

2. HISTORY AND PHILOSOPHY

 Zend Framework was conceived in early

2005 while many new frameworks, such as

Ruby on Rails and the Spring Framework,

were gaining popularity in the web

development community. ZF was publicly

announced at the first Zend Conference. At

the same time, no widely used framework

had been made available to the PHP

community to fulfill similar web

development needs. The designers of Zend

Framework sought to combine the ease-of-

use and rapid application development

(RAD) features of these new frameworks

with the simplicity, openness, and real-

world practicality that is highly valued in the

PHP community.

 Typically, specific development usage

scenarios are implemented using more

generalized software components through

automatic configuration and/or code

generation. In previous releases, the Zend

Framework community has opted to

complete development and testing of these

underlying components before starting work

on simplifying development tasks such as

database migrations, generating scaffolding,

and project creation and configuration. This

practice has been the subject of some

criticism since some functionality

considered by many as necessary for a

general release for modern web application

frameworks is slated for future Zend

Framework releases. Many ZF users,

however, have found such generalized

software components more reusable and

extensible in implementing their

applications. Zend Framework also seeks to

promote web development best practices in

the PHP community; conventions are not as

commonly used in ZF as in many other

frameworks, rather suggestions are put forth

by setting reasonable defaults that can be

overridden for each ZF application’s

specific requirements.

3. THE ZEND FRAMEWORK

COMMUNITY

 Possibly the greatest asset that Zend

Framework has is its community. The

community around Zend Framework is

growing daily. While several of the

developers working on Zend Framework

actually work for Zend, the majority of them

do not.

 The process of proposing and reviewing

new components is open and community

driven. Because the community is comprised

of both beginner and advanced

programmers, there is never any shortage of

help for new adopters. Whether you prefer

mailing lists, forums or chat, Zend

Framework community is always there and

willing to help. The community realized

early on that with any framework, getting

started is the hardest part. Therefore, there

are numerous tutorials and quickstart guides

to help both novice and advanced users get

up and running. The project Web site

(http://framework.zend.com) houses not

only the documentation and downloads for

the project but a full bug-tracking/ticketing

system that allows anyone to register and

submit bugs. This level of openness helps

them meet the first goal of the project,

“Community Driven”.

4. THE ZEND FRAMEWORK LICENSE

AND INTELLECTUAL PROPERTY

CONCERNS

 All contributors to Zend Framework sign

a “Contributors License Agreement” stating

that the code they are contributing is IP

clean. The practice and agreement is similar

in nature to that required by the Apache

group. This was done not as an exclusionary

practice but to give peace of mind to

companies considering adopting Zend

Framework to build commercial

applications. To facilitate its adoption by

both open source projects as well as

commercial entities, Zend Framework was

released under a BSD style license. This

allows for the framework to be used in the

widest possible range of projects and puts

the fewest restrictions on adopters. A

complete copy of the BSD License can be

found on Zend Framework Web site

(http://framework.zend.com/license).

5. MVC

 MVC, like so many great things in

computers, came out of Xerox’s PARC in

1978-1979. These days MVC is a common

pattern for frameworks to implement

because it separates the code into three

logical groups.

 The model can be thought of as the

representation of the data that your

application will utilize. In simple terms,

the model can be thought of as the

“nouns” of your project. An “order”, a

“member”, an “article”, these are all

examples of potential models in your

system.

 The view contains all the display logic.

In the majority of PHP applications, this

means the HTML output of your

application. However, even in web

applications, this can mean a variety of

output formats. Whatever the format, the

view is responsible for the merging of

the data from the model and the actions

of the controller and sending it to the

proper client. (In most cases with PHP,

that’s a web browser).

 The controller is responsible for the

domain logic in your applications. It

represents the verbs or events. “Add,”

“edit” and “submit” are all actions your

application can take. The controller

embodies these actions for you. There

are many good examples of MVC-

implemented frameworks in PHP. If that

were its only selling point then Zend

Framework would be just another

framework in an ever-growing list. Zend

Framework however, separates itself by

allowing you to pull pieces of it out and

use them independently. The Zend

Framework teams calls this “use at will”

architecture. Most of the components

that are not part of the MVC core can be

pulled out and used as “standalone”

components in your application.

 Examples of the “use at will”

components are

• Zend_Cache

• Zend Rest_Client

• Zend_Feed

• Zend_Log

 Each of these can be used independently

of the framework itself and that means their

functionality can be easily incorporated into

existing applications. Simply put, if all you

need is a single component, you can use just

that component. However when the job

requires a full framework, you have that

option also.

 It should be noted here though that MVC

is not something you can retrofit into an

existing application. If you are maintaining

existing code, the component library aspect

of Zend Framework will be of much more

interest to you because you can easily

integrate the pieces you need without

disturbing your existing legacy code.

However, if you are building in “green

fields” then the MVC aspect of Zend

Framework will be of more interest because

you have the luxury of building from

scratch.

6. FEATURES

 All components are fully object-oriented

PHP 5 and are E STRICT compliant

 Use-at-will architecture with loosely

coupled components and minimal

interdependencies

 Extensible MVC implementation

supporting layouts and PHP-based

templates by default

 Flexible Table Gateway implementation

for accessing data from a relational

database in an object-oriented

environment

 Support for multiple database systems

and vendors, including MySQL, Oracle,

IBM DB2, Microsoft SQL Server,

PostgreSQL, SQLite, and Informix

Dynamic Server

 Authentication and ACL-based

authorization using a variety of backend

systems

 Data filtering and validation for

enhanced application security

 Session management

 Configuration component to promote

consistent configuration management

throughout the Zend Framework and ZF

applications

 Email composition and delivery,

retrieval via mbox, Maildir, POP3 and

IMAP4

 Indexing and search that supports the

Lucene index file format

 Internationalization and localization

 Creation of forms using PHP,

configuration files, or XML

 Identity 2.0 technologies such as

Microsoft InfoCard and OpenID

 Multiple formats for web services,

including XML-RPC, REST, and

Google GData.

 Flexible caching sub-system with

support for many types of backends,

such as memory or a file system.

 Simple logging component inspired by

log4j

 Native-PHP component for reading,

updating, and creating PDF documents

 Serialization of PHP data structures to

and from JSON to facilitate AJAX

development

 API for consuming RSS and Atom feeds

 Client libraries for many web services

out of the box, including Amazon E-

Commerce Service , Akismet,

del.icio.us, Flickr, StrikeIron, Yahoo!,

Audioscrobbler, and Simpy.

7. ORGANIZATIONS USING ZEND

FRAMEWORK:

 brainbits

 Berlin Museums

 Digital Sublimity

 Eurotransplant

 GNU/Linux Matters for Poliglota.

 IBM

 Marseille City School System

 Nokia

 Right Media

 Magento

 Shoppingads

 Australia Week

REFERENCES

[1] Cal Evans, “php|architect’s Guide to

Programming with Zend Framework”,

Marco Tabini & Associates, Inc. 2008

[2] Wikipedia, http://en.wikipedia.org/wiki

/Zend_Framework

[3] Zend, http://framework.zend.com/

[4] IBM, http://www.ibm.com/developerw

/opensource/library/os-php-zend1/

http://en.wikipedia.org/wiki/Identity_2.0
http://en.wikipedia.org/wiki%20/Zend_Framework
http://en.wikipedia.org/wiki%20/Zend_Framework
http://en.wikipedia.org/wiki%20/Zend_Framework
http://framework.zend.com/
http://www.ibm.com/developerw%20/opensource/library/os-php-zend1/
http://www.ibm.com/developerw%20/opensource/library/os-php-zend1/
http://www.ibm.com/developerw%20/opensource/library/os-php-zend1/

